Field of Focus
  • Modeling
Area of Expertise
Waterborne Transportation; Estuarine Hydraulics; Sedimentation Engineering
Education
  • Ph.D. in Coastal and Oceanographic Engineering, University of Florida, Florida, U.S.A., 1999
  • M.S. in Coastal and Oceanographic Engineering, University of Florida, Florida, U.S.A., 1973
  • B.S. in Civil Engineering, Arizona State University, Tempe, Arizona, U.S.A., 1969

Research Interest:
Sedimentation Engineering:
Sedimentation Engineering is the use of operational methods and constructed works in concert with natural processes to cause an economically and environmentally sustainable sediment distribution. It considers individual projects within the context of a regional morphological system and in terms of their effects on the region.

Example projects include:

  • Total Maximum Daily Loads (TMDL’s) for the Big Sunflower River
  • Aggregation and Deposition of Estuarial Fine Sediment

Estuarine Hydraulics:
Estuaries are water bodies where rivers meet the sea. They are usually described as semi-enclosed bodies of water with a free connection to the open sea and where sea water is measurable diluted by fresh water from land runoff. They serve as home or a temporary habitat for thousands of species of birds, mammals and fish. They provide for transportation of people and goods by water, and they dilute and assimilate societies’ waste.
Estuarine hydraulics deals with the rise and fall of tides and associated ebb and flood currents, wind-waves, surges, and density currents, and transport processes within tidal waters, including transport, deposition, and erosion of sediments and transport and assimilation of waste materials.

Example projects include:

  • Panama Canal Salinity Reduction
  • Mississippi River Salinity Intrusion

Waterborne Transportation:
Waterborne transportation provides economical, safe, and environmentally sustainable transport of people and goods. The U. S. Marine Transportation System (MTS) includes about 25,000 miles of navigable waterways, 300 ports, 4000 terminals, vessels of all kinds, and connections to other transportation modes. Each year the U.S. MTS handles more than 2 billion tons of freight and 200 million passengers, contributes more than $700 billion to the U. S. economy, employs more than 13 million people, and serves national defense. It presents planning and design challenges for economists, engineers, and scientists working in Federal, and local agencies and private firms to create a safe, efficient, and environmentally sustainable system.

Example Projects Include:
· Effects of Hydrokinetic Power Generation on Navigation
· Ports Sedimentation Study, Tennessee-Tombigbee Waterway

Earth Modeling Systems:
Earth Systems Modeling denotes an integrated scientific and engineering approach to linking Drivers, Pressures, Impacts, States, and Responses (the Integrated Ecosystem Assessment approach) through modeling of physical, biological, and human systems.

Example Projects:
· Integrated Ecosystem Assessment for the Northern Gulf of Mexico
· Healthy Watersheds, Healthy Oceans, Healthy Ecosystems

Experience
2009-Present Co-Director, Northern Gulf Institute
2002-Present Research Professor, Civil & Environmental Engineering, Mississippi State University
1997-2002 Technical Director for Navigation, Coastal and Hydraulics Laboratory, U. S. Army Engineer Research and Development Center, Waterways Experiment Station, Vicksburg, MS.
1985-1997 Chief, Waterways, Estuaries, and Hydrosciences Divisions, U. S. Army Engineer Research and Development Center, Waterways Experiment Station.
1971-1985 Research Hydraulic Engineer, Hydraulics Laboratory, U. S. Army Engineer Research and Development Center, Waterways Experiment Station.
1969-1971 Civil Engineer, Structures Laboratory, U. S. Army Engineer Research and Development Center, Waterways Experiment Station (WES), Vicksburg, MS."

Current GoMRI Research: